News / NSK: Patent Issued for Steering Device (USPTO 9409590)
Date: 2016-08-29
NSK: Patent Issued for Steering Device (USPTO 9409590)
NSK LTD. (Tokyo, JP) has been issued patent number 9409590, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.
This patent was filed on October 17, 2014 and was published online on August 9, 2016.
From the background information supplied by the inventors, news correspondents obtained the following quote: "The present invention relates to a steering device.
"As a structure for supporting a steering device that gives a rudder angle to a vehicle wheel with the rotation of a steering wheel, a technique using a capsule is widely known. For example, in a technique disclosed in Prior Art 1, when an excessive load is applied to a steering column attached to a vehicle body through a capsule so that the steering column is pressed toward the front side of the vehicle body, a part of the capsule is cut so that the steering column moves toward the front side of the vehicle body, and hence a driver (an operator) is protected from the upthrust (secondary collision) of the steering wheel. Meanwhile, Prior Art 2 discloses a structure in which a telescopic fixed member slides due to an impact load. In this structure, since the fixed member is inserted into a groove, there is a need to lengthen the groove in order to take a large stroke amount. As a result, there is a tendency that the column increases in size."
Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "It is an object of the present invention to at least partially solve the problems in the conventional technology. According to an aspect of the invention, a steering device includes an inner column having a cylindrical shape and a first hole opened therein, the inner column rotatably supporting an input shaft connected to a steering wheel; an outer column having a cylindrical shape into which at least a part of the inner column is inserted and having a slit formed by notching one insertion side end of the inner column; an outer column bracket fixed to a vehicle body side member so as to support the outer column and to tighten the outer column along with telescopic friction plates having a plate shape; an inner column bracket having a second hole opened therein, the inner column supported by the telescopic friction plate; and a connection member provided at a position straddling the first hole and the second hole, and the connection member detachably connecting the inner column and the inner column bracket to each other. Each of the telescopic friction plates are disposed at both sides of the outer column, and the inner column bracket includes an arm portion connecting the telescopic friction plates disposed at both sides of the outer column, a neck portion projected from the arm portion in a direction perpendicular to the length direction of the arm portion, and a leg portion provided at an end opposite to the arm portion of the neck portion and contacting the inner column.
"Accordingly, in a steering device according to the invention, when an excessive load is applied to a steering wheel, the load is transmitted to an inner column through an input shaft, and hence the inner column is moved forward. Meanwhile, an inner column bracket which is supported by a telescopic friction plate does not move. For this reason, since a shearing force is applied to a connection member, the connection member is cut when the load exceeds the allowable shearing force of the connection member. When the connection member is cut, the connection between the inner column and the inner column bracket is released. When the connection between the inner column and the inner column bracket is released, the inner column is supported in the axial direction by a friction force generated between the inner column and an outer column. For this reason, the inner column of the steering column may move toward the front side of the vehicle. Further, even when the connection member is cut, the outer column is supported by an outer column bracket fixed to a vehicle body side member. Further, the inner column is supported by the outer column. For this reason, even when the connection member is cut, the steering column does not drop. Thus, the steering device according to the invention may prevent a problem in which the steering column drops by an erroneous operation even when a setting value of a separation load, in which the steering column moves toward the front side of the vehicle, is decreased.
"Further, when an axial load is applied to the inner column bracket, a tightening force is applied from both sides of the outer column to the inner column bracket. For this reason, it is possible to stabilize the posture of the inner column bracket when the connection member is cut. Thus, when the inner column starts to move, a posture of the inner column is maintained to be straight in the axial direction. Thus, since the inner column is likely to move straight in the axial direction, it is possible to prevent a problem where the movement of the inner column is disturbed or a problem where a friction force generated between the inner column and the outer column becomes larger than a predetermined value.
"The arm portion includes a curved portion which is curved in a direction approaching the inner column at a position between the neck portion and the telescopic friction plate. Accordingly, a bonding portion between the arm portion and the telescopic friction plate is located near the inner column. For this reason, the distance, in a direction perpendicular to the axial direction of the inner column, from the bonding portion between the arm portion and the telescopic friction plate to the cut surface used for cutting the connection member is shortened. Thus, since a moment force is prevented from being applied to the inner column bracket when the connection member is cut, it is possible to stabilize the posture of the inner column bracket when the connection member is cut.
"The arm portion includes a rib that is projected in a direction perpendicular to an axial direction of the inner column. Accordingly, the rigidity of the arm portion is improved. For this reason, even when a moment force is applied to the inner column bracket, the deformation of the inner column bracket is suppressed. Thus, it is possible to stabilize the posture of the inner column bracket when the connection member is cut.
"The leg portion is provided at the front and rear sides of the neck portion in an axial direction of the inner column, and the first hole and the second hole are provided at front and rear sides of the neck portion in an axial direction of the inner column. Accordingly, since the distance from the bonding portion between the inner column bracket and the telescopic friction plate to the cut surface used for cutting the connection member is extremely short even when the axial load is applied to the inner column bracket, the moment force applied to the inner column bracket decreases. For this reason, the connection member is cut while the posture of the inner column bracket is stabilized.
"Each of the telescopic friction plates disposed at both sides of the outer column faces each other with the inner column bracket interposed between the telescopic friction plates, and the first hole and the second hole are disposed at a position where the distance values from each of the telescopic friction plates facing each other with the inner column bracket interposed between the telescopic friction plates are equal to each other. Accordingly, since a stable tightening force is applied from both sides of the outer column to the inner column bracket when the axial load is applied to the inner column bracket, it is possible to stabilize the posture of the inner column bracket when the connection member is cut. Thus, when the inner column starts to move, a posture of the inner column is maintained to be straight in the axial direction. Thus, since the inner column is likely to move straight in the axial direction, it is possible to prevent a problem in which the movement of the inner column is disturbed or a problem in which a friction force generated between the inner column and the outer column becomes larger than a predetermined value.
"The outer column is located at a front side of a vehicle body and includes a pivot bracket, and the outer column is formed so that the detached inner column is inserted into the outer column. Accordingly, the axial direction of the outer column may be aligned to the axial direction of the inner column. For this reason, the outer column may easily guide the inner column when the inner column moves in the axial direction. Thus, since the inner column moves easily straight in the axial direction, it is possible to suppress a problem in which the movement of the inner column is disturbed or a problem in which a friction force generated between the inner column and the outer column becomes larger than a predetermined value.
"According to the invention, even when a setting value of a separation load, in which the steering column moves toward the front side of a vehicle body, is decreased, it is possible to provide a steering device capable of suppressing a problem where a steering column is dropped by an erroneous operation."
For the URL and additional information on this patent, see: Johta, Masaya; Kojima, Hideki; Hagiwara, Wataru; Orihara, Daiki; Suzuki, Ryoichi. Steering Device. U.S. Patent Number 9409590, filed October 17, 2014, and published online on August 9, 2016. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9409590.PN.&OS=PN/9409590RS=PN/9409590
1.The news above mentioned with detailed source are from internet.We are trying our best to assure they are accurate ,timely and safe so as to let bearing users and sellers read more related info.However, it doesn't mean we agree with any point of view referred in above contents and we are not responsible for the authenticity. If you want to publish the news,please note the source and you will be legally responsible for the news published.
2.All news edited and translated by us are specially noted the source"TradeBearings".
3.For investors,please be cautious for all news.We don't bear any damage brought by late and inaccurate news.
4.If the news we published involves copyright of yours,just let us know.